Защита от перенапряжения на выходе блока питания. Защита радиоаппаратуры от перенапряжений

Бывают случаи, когда трансиверы выходят из строя из-за не-правильного подключения к источнику питания или внезапного повышения напряжения. Защитить аппаратуру в этих случаях поможет предлагаемое устройство.

Статистика ремонтов приемопередающей аппаратуры показывает, что до 30 % отказов вызваны авариями по питанию. К числу типичных аварийных ситуаций относятся превышение питающего напряжения (перенапряжение) и несоблюдение его полярности (переполюсовка). Некоторые пользователи умудряются каким-то загадочно-непонятным способом сотворить еще и сочетание этих ситуаций. Следует особо подчеркнуть, что уязвимость радиостанции резко возрастает, если применяется нетиповой (в том числе самодельный) предохранитель и источник питания с неоправданно большим запасом по току.

В таких случаях внутренняя защита трансивера оказывается неэффективной и последствия аварий принимают весьма серьезный, а порой и катастрофический характер. Неизбежный массовый отказ дорогостоящих и дефицитных компонентов делает восстановление "убитого" трансивера нерентабельным. При авариях прежде всего повреждаются различные полупроводниковые приборы - диоды, транзисторы, интегральные микросхемы. У них могут измениться характеристики, произойти пробой или обрыв переходов, термомеханическое разрушение корпуса. Выходят из строя резисторы, моточные изделия, лампы подсветки. Может происходить вспучивание или взрыв оксидных конденсаторов, отслоение и выгорание печатных проводников, обугливание участков платы, деформация деталей из термопластов. Вся коллекция отказов взята из практики.

Аварийные ситуации возникают при следующих обстоятельствах: неумелые действия начинающего пользователя, случайная ошибка или небрежность подготовленного оператора, умышленное причинение вреда посторонним лицом, техническая неисправность системы электропитания. К сожалению, от подобных рисков не застрахован ни один владелец радиостанции. Поэтому возникла идея разработать устройство для надежной защиты трансивера при аварийных ситуациях.

Устройство блокирует подачу питания радиостанции при поступлении аномального напряжения в интервале от -50 до +50 В. Оно обладает и другими полезными свойствами, например, не создает падения напряжения в цепи питания трансивера, а также не требует обязательного применения плавкого предохранителя. Что касается быстродействия защиты, то оно не хуже 2 мс и зависит от характера аварийной ситуации.

Схема устройства защиты показана на рис. 1.

При поступлении на вход устройства напряжения положительной полярности с уровнем менее 10 В по цепи VD1R1K1VT1 протекает ток, однако его недостаточно для срабатывания реле К1. При входном напряжении 10... 15 В реле срабатывает и подает питание на трансивер.

Если в процессе работы напряжение превысит 15 В, то стабилитрон VD2 начнет проводить ток, который откроет тиристор VS1. Напряжение на аноде тиристора упадет, транзистор VT1 закроется и обмотка реле К1 обесточится. Поскольку она ничем не зашунтирована, то отпускание контактов реле произойдет за минимальное время (реально 0,5...2 мс). В результате трансивер будет отключен от источника повышенного напряжения. Стабилитрон VD3, применение которого не обязательно, срезает короткий выброс, возможный при очень большой скорости нарастания напряжения.

В случае, если аварийно высокое напряжение поступит на вход устройства скачком от нулевого уровня, то оно вообще не попадет на трансивер, так как электронная "защелка" VD2VS1VT1 среагирует на несколько порядков быстрее, чем успеет сработать реле К1. В случае переполюсовки напряжение отрицательной полярности также не поступит на трансивер, поскольку реле не сработает благодаря диоду VD1, который будет закрыт обратным напряжением.

После аварийного срабатывания защиты возвращение в исходное состояние осуществляется путем кратковременного снятия входного напряжения.

Было изготовлено два варианта конструктивного исполнения устройства. В первом - детали устройства смонтированы внутри корпуса реле К1, в качестве которого использовано реле КУЦ-1 (паспорт РА.362.900) от цветных телевизоров отечественного производства. Оно имеет сопротивление обмотки 560 Ом и срабатывает при напряжении около 5 В. Габаритные размеры устройства (45x45x15мм) позволяют разместить его внутри трансивера либо снаружи на крышке.

Очень удобен и другой вариант - в пластиковом цилиндрическом контейнере от фотопленки. Контейнер имеет диаметр 30 и длину 50 мм. Готовое изделие заливается эпоксидным компаундом и устанавливается в разрыв шнура питания трансивера (аналогично фильтру от импульсных помех). Здесь использовано более компактное реле РЭС47 (паспорт РФ4.500.409) с сопротивлением обмотки 175 Ом. При этом резистор R1 должен иметь сопротивление 110 Ом. Подойдут также любые другие реле, срабатывающие при напряжении 5...6 В и способные коммутировать ток не менее 3 А (например, реле серии TRC фирмы TTI).

Транзистор VT1 можно заменить токовыми ключами серий КР1014, КР1064 с индексами А, В или их аналогами ZVN2120, VN2410. Вместо диода VD1 подойдет любой другой с прямым током не менее 0,3 А и обратным напряжением не менее 400 В, например, КД209А. Стабилитрон VD2 можно заменить на Д814 или КС515А. Тиристор VS1 может быть с индексами Е-И, причем желательно использовать экземпляры, отобранные по максимальной чувствительности.

Налаживание устройства начинают с подбора резистора R1, добиваясь срабатывания реле при напряжении на входе 9,5...10 В. Затем, медленно и плавно повышая напряжение, убеждаются, что реле отпускает при 14,5...15 В. Если потребуется, то напряжение отсечки можно изменить подбором стабилитрона VD2.

Автор провел испытания Си-Би трансивера ALAN-78 PLUS, оснащенного предлагаемым устройством защиты. Процедура испытаний имитировала серию наиболее опасных аварийных ситуаций, а именно, комбинацию переполюсовки и перенапряжения. Кроме этого, намеренно вводился фактор усугубления аварии - вместо штатного плавкого предохранителя номиналом 2 А была установлена перемычка из толстого провода. В обычных условиях такой, можно сказать, "беспредел" гарантирует обширное и необратимое разрушение электронных элементов любого трансивера.

В ходе испытаний аппарат многократно подключался к источникам тока (блоки питания PS-30, Б5-48, Б5-71, трансформатор ОСМ-220/36 В), которые имели следующие параметры: -13,8 В (32 А);+16 В (10 А);-16 В (10 А); + 30 В (10 А); -30 В (10 А); -36 В (50 Гц, 5 А); +50 В (2 А); -50 В (2 А). Подача на трансивер каждого испытательного напряжения осуществлялась автоматически с помощью программного устройства, работающего по циклограмме, отображенной в таблице.

Расширенный режим испытаний позволил моделировать аварийные ситуации различной продолжительности и попутно проверить устойчивость защиты к переходным процессам. Если каждый факт подачи на трансивер аномального напряжения рассматривать как аварийную ситуацию, то нетрудно подсчитать, что их суммарное число составило 688. Тем не менее столь сокрушающее воздействие не причинило радиостанции никакого вреда. При контрольной подаче номинального напряжения (+13,2 В) аппарат включился и показал полную работоспособность. Такой результат испытаний свидетельствует о надежности устройства и позволяет отнести его к категории "защиты от дурака".

Если несколько усложнить устройство, оно может обеспечить дополнительно защиту по току потребления и от аварийного повышения ВЧ напряжения на коллекторе выходного транзистора передатчика. Такое повышение возможно при рассогласовании антенно-фидерного тракта или возбуждении выходного каскада.

Схема этого варианта изображена на рис. 2.

Защита по току (перегрузка и короткое замыкание) осуществляется с помощью геркона SF1 с расположенной на нем катушкой L1. При увеличении тока, потребляемого трансивером, выше установленного значения, электромагнитное поле катушки становится достаточным для замыкания магнитоуправляемого контакта.

Поскольку геркон включен параллельно стабилитрону VD2, то происходит аварийное отключение устройства аналогично ситуации с перенапряжением. Элементы VT2, С1, R4, VD4 формируют зону временной нечувствительности защиты к броску тока, возникающему в момент включения трансивера. Для радиостанции ALAN-78PLUS это время равно 22 мс и может корректироваться подбором конденсатора С1.

При работе с устройством (рис. 2) необходимо сначала включить трансивер, а затем тумблер SA1.

Настройка токовой защиты на уровень 2...3 А сводится к подбору числа витков катушки L1, состоящей из 4-8 витков провода ПЭЛ 0,5 (грубо) и перемещению ее по геркону (точно) с последующим фиксированием термоплавким клеем.

При рассогласованной нагрузке (например, обрыв в антенно-фидерном тракте) ВЧ напряжение на коллекторе выходного транзистора передатчика увеличивается, что чревато пробоем его переходов. Однако в этом случае стабилитрон VD5 начинает проводить ток, который открывает транзистор VT3. Положительное напряжение с коллектора транзистора поступает на управляющий электрод тиристора VS1. Затем устройство отключается аналогично другим аварийным ситуациям.

Резистор R7 подбирают таким образом, чтобы трансивер отключался при работе передатчика на эквивалент антенны 150 Ом, что соответствует КСВ-3.

Эмиттерный переход транзистора VT2 (см. рис. 2) необходимо зашунтировать резистором сопротивлением около 10 кОм.

При выходе из строя как линейных, так и импульсных стабилизаторов постоянного напряжения, выполненных на транзисторах или микросхемах, выходное напряжение может стать практически равным входному (выпрямленному) напряжению, обычно снимаемому с конденсатора фильтра питания, установленного на выходе диодного моста. Например, при "прогорании" КР142ЕН5А, которая обычно используется в цепях питания цифровых устройств, на шины питания может поступить напряжение 7...15 В вместо положенных 5 В. Это уже опасно для абсолютного большинства устройств.

Иногда для защиты чувствительных к перенапряжению узлов радиоаппаратуры используют мощный стабилитрон с напряжением стабилизации, чуть большим номинального напряжения питания. Недостаток такого способа защиты в том, что многие стабилитроны обладают достаточно большим дифференциальным сопротивлением, и защищаемое устройство может продолжать работать некоторое время, получая напряжение, на 0,5...1,5 В больше номинального. Сильно разогревающийся в это время стабилитрон может "уйти на обрыв", и защиты как таковой не получится.

Для предохранения отдельных узлов и блоков радиоаппаратуры от повышенного напряжения при повреждении стабилизатора или неправильного подключения к источнику питания, можно собрать несложный регулируемый блок защиты (рис.1). Он включается в разрыв цепи между выходом источника питания и нагрузкой.

Рис.1. Приципиальная схема простого блока защиты

Работает этот блок следующим образом. При повышении входного напряжения ток через стабилитрон VD1 резко возрастает, соответственно, увеличивается и ток в цепи управляющего электрода тиристора VS1, тиристор открывается и шунтирует питание нагрузки до момента срабатывания предохранителя FU1. Мощный проволочный резистор R3 предотвращает пробой тиристора из-за сильного броска тока, который возникает в случае, если в цепи питания установлены оксидные конденсаторы большой емкости. Стабилитрон VD1 выбирается на напряжение, примерно на 0,3...1,5 В меньшее, чем номинальное напряжение питания. Выбор его типа зависит от ряда факторов, поэтому оптимальный вариант для каждого конкретного случая лучше определить экспериментально. Регулировкой резистора R1 можно точно установить то напряжение, при котором будет открываться тиристор. Конденсатор С1 предотвращает ложное срабатывание блока защиты при коротких импульсных помехах, которые могут появляться в цепи питания. Резистор R2 защищает стабилитрон и тиристор в случае, когда движок подстроечного резистора находится в верхнем положении. На время настройки этого блока предохранитель желательно заменить лампой накаливания, по зажиганию которой можно судить о моменте включения тиристора.

Более совершенный блок защиты можно собрать по схеме, приведенной на рис.2.


Рис.2. Приципиальная схема блока защиты с реле

При повышении входного напряжения питание нагрузки прекращается из-за размыкания контактов реле К1. Цепь R3-VD2 предназначена для уменьшения кратковременного всплеска напряжения на выходе блока, который может появиться из-за инерционности переключения контактов реле.

Для защиты установленных в автомобиле радиоэлектронных устройств, например, автомагнитолы или сигнализации от превышения напряжения в бортовой сети, можно собрать блок защиты по схеме, приведенной на рис.3.


Рис.3. Приципиальная схема блока защиты автомобильных радиоэлектронных устройств

Здесь движок резистора R1 установлен в положение, при котором срабатывание защиты происходит при входном напряжении 15...16 В. При открывании тиристора размыкаются контакты реле, питание нагрузки прекращается, начинает вспыхивать мигающий светодиод HL1. Конденсаторы С1...СЗ повышают помехоустойчивость. Нажатием кнопки SB1 (без фиксации) можно возвратить блок защиты в режим ожидания.

Подстроечные резисторы можно взять сопротивлением 150...470 Ом типов СПЗ-38, РП1-63М, СП5-16ВА, СП4-1 или, что лучше, многооборотные - типа СПЗ-39. Проволочные резисторы - типа С5-16МВ или самодельные из короткого отрезка толстого высокоомного провода.Конденсаторы - типов К10-17, КМ-5. Тиристоры подойдут любые из серий КУ228, КУ201, КУ202, Т122. Диод КД213А заменяется мощным диодом из серий КД202, Д242, КД2999. Мигающий светодиод использован красного цвета. Его можно заменить любым из серий L56, L36, L799, L816 и другими аналогичными. Электромагнитное реле типа РМУ (паспорт ЧП4.523.332) можно заменить на любое, надежно срабатывающее при номинальном входном напряжении и имеющее достаточно мощные нормальнозамкнутые контакты.

В узлах по схемам на рис.2 и 3 можно устанавливать реле типа РЭК29 от систем ДУ старых отечественных телевизоров, отмотав с его катушки нужное количество витков. Можно приспособить и подходящие по конструкции автомобильные реле.

Для защиты автомобильного оборудования в цепи датчика напряжения можно использовать стабилитроны КС297В, Д814Д, КС213Ж, КС508А, 1N6003B. Для конструкций на низковольтных цифровых микросхемах подойдут стабилитроны типов КС126Г, КС126Д, КС139А, КС147А, КС407Б, КС439А, 1 N5991 В. Для устройств на ИМС серий К561, 564, КР1561 нужный стабилитрон можно выбрать из ряда КС215Ж, КС216Ж, КС508Б, КС518А, 1N6005B, 1N6006B, 1N4745A.

УСТРОЙСТВО ЗАЩИТЫ ТРАНСИВЕРА

Сокращенный вариант статьи

Источник: журнал «Радио», 2002, № 5, с. 66

Статистика ремонтов приемопередающей аппаратуры показывает, что до 30 % отказов вызваны авариями по питанию. К числу типичных аварийных ситуаций относятся превышение питающего напряжения (перенапряжение) и несоблюдение его полярности (переполюсовка). Некоторые пользователи умудряются каким-то загадочно-непонятным способом сотворить еще и сочетание этих ситуаций. Следует особо подчеркнуть, что уязвимость радиостанции резко возрастает, если применяется нетиповой (в том числе самодельный) предохранитель и источник с неоправданно большим запасом по току.

В таких случаях внутренняя защита трансивера оказывается неэффективной и последствия аварий принимают весьма серьезный, а порой и катастрофический характер. Неизбежный массовый отказ дорогостоящих и дефицитных компонентов делает восстановление «убитого» трансивера нерентабельным. При авариях, прежде всего, повреждаются различные полупроводниковые приборы - диоды, транзисторы, интегральные микросхемы. У них могут измениться характеристики, произойти пробой или обрыв переходов, термомеханическое разрушение корпуса. Выходят из строя резисторы, моточные изделия, лампы подсветки. Может происходить вспучивание или взрыв оксидных конденсаторов, отслоение и выгорание печатных проводников, обугливание участков платы, деформация деталей из термопластов. Вся коллекция отказов взята из практики.

Аварийные ситуации возникают при следующих обстоятельствах: неумелые действия начинающего пользователя, случайная ошибка или небрежность опытного оператора, умышленное причинение вреда посторонним лицом, техническая неисправность системы электропитания. Как видим, от подобных рисков не застрахован ни один владелец радиостанции. Поэтому возникла идея разработать устройство для надежной защиты трансивера при аварийных ситуациях.

Устройство блокирует подачу питания радиостанции при поступлении аномального напряжения в интервале от -50 до +50 В. Оно обладает и другими полезными свойствами, например, не создает падения напряжения в цепи питания трансивера, а также не требует обязательного применения предохранителя. Что касается быстродействия защиты, то оно не превышает 2 мс и зависит от характера аварийной ситуации.

Схема устройства защиты показана на рис. 1 . При поступлении на вход устройства напряжения положительной полярности с уровнем менее 10В по цепи VD1R1R1VT1 протекает ток, однако его недостаточно для срабатывания реле К1. При входном напряжении 10…15 В реле срабатывает и подает питание на трансивер.

Если в процессе работы напряжение превысит 15В, то стабилитрон VT1 начнет проводить ток, который откроет тиристор VS1. Напряжение на аноде тиристора упадет, транзистор VT1 закроется и обмотка реле К1 обесточится. Поскольку она ничем не зашунтирована, то отпускание контактов реле произойдет за минимальное время (реально 0,5…2 мс). В результате трансивер будет отключен от источника повышенного напряжения. Стабилитрон VD3, применение которого не обязательно, срезает короткий выброс, возможный при очень большой скорости нарастания напряжения.

В случае, если аварийно высокое напряжение поступит на вход устройства скачком от нулевого уровня, то оно вообще не попадет на трансивер, так как электронная «защелка» VD2VS1VT1 среагирует на несколько порядков быстрее, чем успеет сработать реле К1. В случае переполюсовки напряжение отрицательной полярности также не поступит на трансивер, поскольку реле не сработает благодаря диоду VD1, который будет закрыт обратным напряжением.

После аварийного срабатывания защиты возвращение в исходное состояние осуществляется путем кратковременного снятия входного напряжения.

Было изготовлено два варианта конструктивного исполнения устройства. В первом - детали устройства смонтированы внутри корпуса реле К1, в качестве которого использовано реле КУЦ-1 (паспорт РА.362.900) от цветных телевизоров отечественного производства. Оно имеет сопротивление обмотки 560 Ом и срабатывает при напряжении около 5 В. Габаритные размеры устройства (45х45х15 мм) позволяют поместить его внутри трансивера либо снаружи на крышке.

Очень удобен и другой вариант - в пластиковом цилиндрическом контейнере от фотопленки, имеющим диаметр 30 и длину 50 мм. Готовое изделие заливается эпоксидным компаундом и устанавливается в разрыв шнура питания трансивера (аналогично фильтру от импульсных помех). Здесь использовано более компактное реле РЭС47 (паспорт РФ4.500.409) с сопротивлением обмотки 175 Ом. При этом резистор R1 должен иметь сопротивление 110 Ом. Подойдут также любые другие малогабаритные реле, срабатывающие при напряжении 5…6 В и способные коммутировать ток не менее 3 А (например, реле серии ТRС фирмы TTI).

Транзистор VT1 можно заменить токовыми ключами серий КР1014, КР1064 с индексами А, В или их аналогами ZVN2120, VN2410. Вместо диода VD1 подойдет любой другой с прямым током не менее 0,3 А и обратным напряжением не менее 400 В, например, КД209А. Стабилитрон VD2 можно заменить на Д814 или КС515А. Тиристор VS1 может быть с индексами Е-И, причем желательно использовать экземпляры, отобранные по максимальной чувствительности.

Налаживание устройства начинают с подбора резистора R1, добиваясь срабатывания реле при напряжении 9,5…10 В. Затем, медленно и плавно повышая напряжение, убеждаются, что реле отпускает при 14,5…15,0 В. Если потребуется, то напряжение отсечки можно изменить подбором стабилитрона VD2.

Автор рискнул провести испытания СиБи трансивера Alan 78 Plus, оснащенного устройством защиты. Процедура испытаний имитировала серию наиболее опасных аварийных ситуаций, а именно, комбинацию переполюсовки и перенапряжения. Кроме этого, намеренно вводился фактор усугубления аварии - вместо штатного плавкого предохранителя номиналом 2 А была установлена перемычка из толстого провода. В реальных условиях такой, можно сказать, «беспредел» гарантирует обширное и необратимое разрушение электронных компонентов любого трансивера.

В ходе испытаний аппарат многократно подключался к источникам тока - блоки питания PS-30, Б5-48, Б5-71 и трансформатор ОСМ-220/36, которые имели следующие выходные параметры:

13,8 В (32 А), +16 В (10 А), -16 В (10 А), +30 В (10 А), -30 В (10 А), +50 В (2 А), -50 В (2 А), ~36 В (50 Гц, 5 А).

Подача на трансивер каждого испытательного напряжения осуществлялась автоматически с помощью программного устройства, работающего по циклограмме, отображенной в таблице .

Число циклов подключения

Продолжительность каждого подключения, с

Пауза между подключениями, с

Расширенный режим испытаний позволил моделировать аварийные ситуации различной продолжительности и попутно проверить устойчивость защиты к переходным процессам. Если каждый факт подачи на трансивер аномального напряжения рассматривать как аварийную ситуацию, то нетрудно подсчитать, что их суммарное количество составило 688. Тем не менее, столь сокрушающее воздействие не причинило радиостанции никакого вреда. При контрольной подаче номинального напряжения (+13,2 В) аппарат включился и показал полную работоспособность. Такой результат испытаний свидетельствует о надежности устройства и позволяет отнести его категории «защиты от дурака».

Если несколько усложнить устройство, оно может обеспечить дополнительно защиту по току потребления и от аварийного повышения ВЧ напряжения на коллекторе выходного транзистора передатчика. Такое повышение происходит при рассогласовании антенно-фидерного тракта или возбуждении выходного каскада.

Схема этого варианта изображена на рис. 2 . Защита по тока (перегрузка, КЗ) осуществляется с помощью датчика тока - геркона SF1 с расположенной на нем катушкой L1. При увеличении тока, потребляемого трансивером выше установленного значения, электромагнитное поле катушки становится достаточным для замыкания магнитоуправляемого контакта.

Поскольку геркон включен параллельно стабилитрону VD2, то происходит аварийное отключение устройства аналогично ситуации с перенапряжением. Элементы VT2, C1, R4, VD4 формируют зону временной нечувствительности защиты к броску тока, возникающему в момент включения трансивера. Для Alan 78 Plus это время составляет около 22 мс и может корректироваться подбором конденсатора С1.

При работе с устройством необходимо сначала включить трансивер, а затем тумблер SA1.

Настройка токовой защиты на уровень 2…3 А сводится к подбору числа витков катушки L1, состоящей из 4…8 витков провода ПЭЛ 0,5 (грубо) и перемещению ее по геркону (точно) с последующим фиксированием термоплавким клеем.

При рассогласованной нагрузке (например, обрыве в антенно-фидерном тракте) ВЧ напряжение на коллекторе выходного транзистора передатчика увеличивается, что чревато пробоем его переходов. Однако в этом случае стабилитрон VD5 начинает проводить ток, который открывает транзистор VT3. Положительное напряжение с коллектора транзистора поступает на управляющий электрод тиристора VS1 и устройство отключается аналогично другим аварийным ситуациям.

Резистор R7 подбирают таким образом, чтобы трансивер отключался при работе передатчика на эквивалент антенны 150 Ом, что соответствует КСВ-3.

УСТРОЙСТВО ЗАЩИТЫ ТРАНСИВЕРА

Сокращенный вариант статьи

Источник: журнал «Радио», 2002, № 5, с. 66

Статистика ремонтов приемопередающей аппаратуры показывает, что до 30 % отказов вызваны авариями по питанию.

К числу типичных аварийных ситуаций относятся превышение питающего напряжения (перенапряжение) и несоблюдение его полярности (переполюсовка). Некоторые пользователи умудряются каким-то загадочно-непонятным способом сотворить еще и сочетание этих ситуаций.

Следует особо подчеркнуть, что уязвимость радиостанции резко возрастает, если применяется нетиповой (в том числе самодельный) предохранитель и источник с неоправданно большим запасом по току.

В таких случаях внутренняя защита трансивера оказывается неэффективной и последствия аварий принимают весьма серьезный, а порой и катастрофический характер. Неизбежный массовый отказ дорогостоящих и дефицитных компонентов делает восстановление «убитого» трансивера нерентабельным. При авариях, прежде всего, повреждаются различные полупроводниковые приборы - диоды, транзисторы, интегральные микросхемы. У них могут измениться характеристики, произойти пробой или обрыв переходов, термомеханическое разрушение корпуса.

Выходят из строя резисторы, моточные изделия, лампы подсветки. Может происходить вспучивание или взрыв оксидных конденсаторов, отслоение и выгорание печатных проводников, обугливание участков платы, деформация деталей из термопластов. Вся коллекция отказов взята из практики.

Аварийные ситуации возникают при следующих обстоятельствах: неумелые действия начинающего пользователя, случайная ошибка или небрежность опытного оператора, умышленное причинение вреда посторонним лицом, техническая неисправность системы электропитания. Как видим, от подобных рисков не застрахован ни один владелец радиостанции. Поэтому возникла идея разработать устройство для надежной защиты трансивера при аварийных ситуациях.

Устройство блокирует подачу питания радиостанции при поступлении аномального напряжения в интервале от -50 до +50 В. Оно обладает и другими полезными свойствами, например, не создает падения напряжения в цепи питания трансивера, а также не требует обязательного применения предохранителя. Что касается быстродействия защиты, то оно не превышает 2 мс и зависит от характера аварийной ситуации.

Схема устройства защиты показана на рис. 1 . При поступлении на вход устройства напряжения положительной полярности с уровнем менее 10В по цепи VD1R1R1VT1 протекает ток, однако его недостаточно для срабатывания реле К1. При входном напряжении 10…15 В реле срабатывает и подает питание на трансивер.

Если в процессе работы напряжение превысит 15В, то стабилитрон VT1 начнет проводить ток, который откроет тиристор VS1. Напряжение на аноде тиристора упадет, транзистор VT1 закроется и обмотка реле К1 обесточится. Поскольку она ничем не зашунтирована, то отпускание контактов реле произойдет за минимальное время (реально 0,5…2 мс). В результате трансивер будет отключен от источника повышенного напряжения. Стабилитрон VD3, применение которого не обязательно, срезает короткий выброс, возможный при очень большой скорости нарастания напряжения.

В случае, если аварийно высокое напряжение поступит на вход устройства скачком от нулевого уровня, то оно вообще не попадет на трансивер, так как электронная «защелка» VD2VS1VT1 среагирует на несколько порядков быстрее, чем успеет сработать реле К1. В случае переполюсовки напряжение отрицательной полярности также не поступит на трансивер, поскольку реле не сработает благодаря диоду VD1, который будет закрыт обратным напряжением.

После аварийного срабатывания защиты возвращение в исходное состояние осуществляется путем кратковременного снятия входного напряжения.

Было изготовлено два варианта конструктивного исполнения устройства. В первом - детали устройства смонтированы внутри корпуса реле К1, в качестве которого использовано реле КУЦ-1 (паспорт РА.362.900) от цветных телевизоров отечественного производства. Оно имеет сопротивление обмотки 560 Ом и срабатывает при напряжении около 5 В. Габаритные размеры устройства (45х45х15 мм) позволяют поместить его внутри трансивера либо снаружи на крышке.

Очень удобен и другой вариант - в пластиковом цилиндрическом контейнере от фотопленки, имеющим диаметр 30 и длину 50 мм. Готовое изделие заливается эпоксидным компаундом и устанавливается в разрыв шнура питания трансивера (аналогично фильтру от импульсных помех). Здесь использовано более компактное реле РЭС47 (паспорт РФ4.500.409) с сопротивлением обмотки 175 Ом. При этом резистор R1 должен иметь сопротивление 110 Ом. Подойдут также любые другие малогабаритные реле, срабатывающие при напряжении 5…6 В и способные коммутировать ток не менее 3 А (например, реле серии ТRС фирмы TTI).

Транзистор VT1 можно заменить токовыми ключами серий КР1014, КР1064 с индексами А, В или их аналогами ZVN2120, VN2410. Вместо диода VD1 подойдет любой другой с прямым током не менее 0,3 А и обратным напряжением не менее 400 В, например, КД209А. Стабилитрон VD2 можно заменить на Д814 или КС515А. Тиристор VS1 может быть с индексами Е-И, причем желательно использовать экземпляры, отобранные по максимальной чувствительности.

Налаживание устройства начинают с подбора резистора R1, добиваясь срабатывания реле при напряжении 9,5…10 В. Затем, медленно и плавно повышая напряжение, убеждаются, что реле отпускает при 14,5…15,0 В. Если потребуется, то напряжение отсечки можно изменить подбором стабилитрона VD2.

Автор рискнул провести испытания СиБи трансивера Alan 78 Plus, оснащенного устройством защиты. Процедура испытаний имитировала серию наиболее опасных аварийных ситуаций, а именно, комбинацию переполюсовки и перенапряжения. Кроме этого, намеренно вводился фактор усугубления аварии - вместо штатного плавкого предохранителя номиналом 2 А была установлена перемычка из толстого провода. В реальных условиях такой, можно сказать, «беспредел» гарантирует обширное и необратимое разрушение электронных компонентов любого трансивера.

В ходе испытаний аппарат многократно подключался к источникам тока - блоки питания PS-30, Б5-48, Б5-71 и трансформатор ОСМ-220/36, которые имели следующие выходные параметры:

13,8 В (32 А), +16 В (10 А), -16 В (10 А), +30 В (10 А), -30 В (10 А), +50 В (2 А), -50 В (2 А), ~36 В (50 Гц, 5 А).

Подача на трансивер каждого испытательного напряжения осуществлялась автоматически с помощью программного устройства, работающего по циклограмме, отображенной в таблице .

Число циклов подключения

Продолжительность каждого подключения, с

Пауза между подключениями, с

Расширенный режим испытаний позволил моделировать аварийные ситуации различной продолжительности и попутно проверить устойчивость защиты к переходным процессам. Если каждый факт подачи на трансивер аномального напряжения рассматривать как аварийную ситуацию, то нетрудно подсчитать, что их суммарное количество составило 688. Тем не менее, столь сокрушающее воздействие не причинило радиостанции никакого вреда. При контрольной подаче номинального напряжения (+13,2 В) аппарат включился и показал полную работоспособность. Такой результат испытаний свидетельствует о надежности устройства и позволяет отнести его категории «защиты от дурака».

Если несколько усложнить устройство, оно может обеспечить дополнительно защиту по току потребления и от аварийного повышения ВЧ напряжения на коллекторе выходного транзистора передатчика. Такое повышение происходит при рассогласовании антенно-фидерного тракта или возбуждении выходного каскада.

Схема этого варианта изображена на рис. 2 . Защита по тока (перегрузка, КЗ) осуществляется с помощью датчика тока - геркона SF1 с расположенной на нем катушкой L1. При увеличении тока, потребляемого трансивером выше установленного значения, электромагнитное поле катушки становится достаточным для замыкания магнитоуправляемого контакта.

Поскольку геркон включен параллельно стабилитрону VD2, то происходит аварийное отключение устройства аналогично ситуации с перенапряжением. Элементы VT2, C1, R4, VD4 формируют зону временной нечувствительности защиты к броску тока, возникающему в момент включения трансивера. Для Alan 78 Plus это время составляет около 22 мс и может корректироваться подбором конденсатора С1.

При работе с устройством необходимо сначала включить трансивер, а затем тумблер SA1.

Настройка токовой защиты на уровень 2…3 А сводится к подбору числа витков катушки L1, состоящей из 4…8 витков провода ПЭЛ 0,5 (грубо) и перемещению ее по геркону (точно) с последующим фиксированием термоплавким клеем.

При рассогласованной нагрузке (например, обрыве в антенно-фидерном тракте) ВЧ напряжение на коллекторе выходного транзистора передатчика увеличивается, что чревато пробоем его переходов. Однако в этом случае стабилитрон VD5 начинает проводить ток, который открывает транзистор VT3. Положительное напряжение с коллектора транзистора поступает на управляющий электрод тиристора VS1 и устройство отключается аналогично другим аварийным ситуациям.

Резистор R7 подбирают таким образом, чтобы трансивер отключался при работе передатчика на эквивалент антенны 150 Ом, что соответствует КСВ-3.

Бывают случаи, когда трансиверы выходят из строя из-за неправильного подключения к источнику питания или внезапного повышения напряжения. Защитить аппаратуру в этих случаях поможет предлагаемое устройство.

Статистика ремонтов приемопередающей аппаратуры показывает, что до 30 % отказов вызваны авариями по питанию. К числу типичных аварийных ситуаций относятся превышение питающего напряжения (перенапряжение) и несоблюдение его полярности (переполюсовка). Некоторые пользователи умудряются каким-то загадочно-непонятным способом сотворить еще и сочетание этих ситуаций. Следует особо подчеркнуть, что уязвимость радиостанции резко возрастает, если применяется нетиповой (в том числе самодельный) предохранитель и источник питания с неоправданно большим запасом по току.

В таких случаях внутренняя защита трансивера оказывается неэффективной и последствия аварий принимают весьма серьезный, а порой и катастрофический характер. Неизбежный массовый отказ дорогостоящих и дефицитных компонентов делает восстановление "убитого" трансивера нерентабельным. При авариях

, прежде всего повреждаются различные полупроводниковые приборы - диоды, транзисторы, интегральные микросхемы. У них могут измениться характеристики, произойти пробой или обрыв переходов, термомеханическое разрушение корпуса. Выходят из строя резисторы, моточные изделия, лампы подсветки. Может происходить вспучивание или взрыв оксидных конденсаторов, отслоение и выгорание печатных проводников, обугливание участков платы, деформация деталей из термопластов. Вся коллекция отказов взята из практики.

Аварийные ситуации возникают при следующих обстоятельствах: неумелые действия начинающего пользователя, случайная ошибка или небрежность подготовленного оператора, умышленное причинение вреда посторонним лицом, техническая неисправность системы электропитания. К сожалению, от подобных рисков не застрахован ни один владелец радиостанции. Поэтому возникла идея разработать устройство для надежной защиты трансивера при аварийных ситуациях.

Устройство блокирует подачу питания радиостанции при поступлении аномального напряжения в интервале от -50 до +50 В. Оно обладает и другими полезными свойствами, например, не создает падения напряжения в цепи питания трансивера, а также не требует обязательного применения плавкого предохранителя. Что касается быстродействия защиты, то оно не хуже 2 мс и зависит от характера аварийной ситуации.

Схема устройства защиты показана на рис. 1.

При поступлении на вход устройства напряжения положительной полярности с уровнем менее 10В по цепи VD1R1K1VT1 протекает ток, однако его недостаточно для срабатывания реле К1.

При входном напряжении 10... 15В реле срабатывает и подает питание на трансивер.

Если в процессе работы напряжение превысит 15В, то стабилитрон VD2 начнет проводить ток, который откроет тиристор VS1. Напряжение на аноде тиристора упадет, транзистор VT1 закроется и обмотка реле К1 обесточится.

Поскольку она ничем не зашунтирована, то отпускание контактов реле произойдет за минимальное время (реально 0.5...2 мс). В результате трансивер будет отключен от источника повышенного напряжения.

Стабилитрон VD3, применение которого не обязательно, срезает короткий выброс, возможный при очень большой скорости нарастания напряжения.

В случае, если аварийно высокое напряжение поступит на вход устройства скачком от нулевого уровня, то оно вообще не попадет на трансивер, так как электронная "защелка" VD2VS1VT1 среагирует на несколько порядков быстрее, чем успеет сработать реле К1. В случае переполюсовки напряжение отрицательной полярности также не поступит на трансивер, поскольку реле не сработает благодаря диоду VD1, который будет закрыт обратным напряжением.

После аварийного срабатывания защиты возвращение в исходное состояние осуществляется путем кратковременного снятия входного напряжения.

Было изготовлено два варианта конструктивного исполнения устройства. В первом - детали устройства смонтированы внутри корпуса реле К1, в качестве которого использовано реле КУЦ-1

(паспорт РА.362.900) от цветных телевизоров отечественного производства. Оно имеет сопротивление обмотки 560 Ом и срабатывает при напряжении около 5 В. Габаритные размеры устройства (45x45x15мм) позволяют разместить его внутри трансивера либо снаружи на крышке.

Очень удобен и другой вариант в пластиковом цилиндрическом контейнере от фотопленки. Контейнер имеет диаметр 30 и длину 50 мм. Готовое изделие заливается эпоксидным компаундом и устанавливается в разрыв шнура питания трансивера (аналогично фильтру от импульсных помех). Здесь использовано более компактное реле РЭС47 (паспорт РФ4.500.409) с сопротивлением обмотки 175 Ом. При этом резистор R1 должен иметь сопротивление 110 Ом. Подойдут также любые другие реле, срабатывающие при напряжении 5...6В и способные коммутировать ток не менее 3А (например, реле серии TRC фирмы TTI).

Транзистор VT1 можно заменить токовыми ключами серий КР1014, КР1064 с индексами А, В или их аналогами ZVN2120, VN2410. Вместо диода VD1 подойдет любой другой с прямым током не менее 0,3А и обратным напряжением не менее 400 В, например, КД209А. Стабилитрон VD2 можно заменить на Д814 или КС515А. Тиристор VS1 может быть с индексами Е-И, причем желательно использовать экземпляры, отобранные по максимальной чувствительности.

Налаживание устройства начинают с подбора резистора R1. добиваясь срабатывания реле при напряжении на входе 9,5...10 В. Затем, медленно и плавно повышая напряжение, убеждаются, что реле отпускает при 14,5...15 В. Если потребуется, то напряжение отсечки можно изменить подбором стабилитрона VD2.

Автор провел испытания Си-Би трансивера ALAN-78 PLUS, оснащенного предлагаемым устройством защиты. Процедура испытаний имитировала серию наиболее опасных аварийных ситуаций, а именно, комбинацию переполюсовки и перенапряжения. Кроме этого, намеренно вводился фактор усугубления аварии - вместо штатного плавкого предохранителя номиналом 2А была установлена перемычка из толстого провода. В обычных условиях такой, можно сказать, "беспредел" гарантирует обширное и необратимое разрушение электронных элементов любого трансивера.

В ходе испытаний аппарат многократно подключался к источникам тока (блоки питания PS-30, Б5-48, Б5-71, трансформатор ОСМ-220/36 В), которые имели следующие параметры: -13,8В (32 А);+16 В (10 А);-16 В (10 А); + 30 В (10 А); -30 В (10 А); -36 В (50 Гц, 5 А); +50 В (2 А);

-50 В (2 А).

Подача на трансивер каждого испытательного напряжения осуществлялась автоматически с помощью программного устройства, работающего по циклограмме, отображенной в таблице.

Расширенный режим испытаний позволил моделировать аварийные ситуации различной продолжительности и попутно проверить устойчивость защиты к переходным процессам.

Если каждый факт подачи на трансивер аномального напряжения рассматривать как аварийную ситуацию, то нетрудно подсчитать, что их суммарное число составило 688. Тем не менее

, столь сокрушающее воздействие не причинило радиостанции никакого вреда.

При контрольной подаче номинального напряжения (+13,2 В) аппарат включился и показал полную работоспособность. Такой результат испытаний свидетельствует о надежности устройства и позволяет отнести его к категории "защиты от дурака".

Если несколько усложнить устройство, оно может обеспечить дополнительно защиту по току потребления и от аварийного повышения ВЧ напряжения на коллекторе выходного транзистора передатчика. Такое повышение возможно при рассогласовании антенно-фидерного тракта или возбуждении выходного каскада.


Схема этого варианта изображена на рис. 2.

Защита по току (перегрузка и короткое замыкание) осуществляется с помощью геркона SF1 с расположенной на нем катушкой L1.

При увеличении тока, потребляемого трансивером, выше установленного значения, электромагнитное поле катушки становится достаточным для замыкания магнито управляемого контакта.

Поскольку геркон включен параллельно стабилитрону VD2, то происходит аварийное отключение устройства аналогично ситуации с перенапряжением.

Элементы VT2: C1. R4, VD4 формируют зону временной нечувствительности защиты к броску тока, возникающему в момент включения трансивера.

Для радиостанции ALAN-78PLUS это время равно 22 мс и может корректироваться подбором конденсатора С1. При работе с устройством (рис. 2) необходимо сначала включить трансивер, а затем тумблер SA1.

Настройка токовой защиты на уровень 2

...3 А сводится к подбору числа витков катушки L1, состоящей из 4-8 витков провода ПЭЛ 0,5 (грубо) и перемещению ее по геркону (точно) с последующим фиксированием термоплавким клеем.

При рассогласованной нагрузке (например, обрыв в антенно-фидерном тракте) ВЧ напряжение на коллекторе выходного транзистора передатчика увеличивается, что чревато пробоем его переходов. Однако в этом случае стабилитрон VD5 начинает про-

водить ток, который открывает транзистор VT3. Положительное напряжение с коллектора транзистора поступает на управляющий электрод тиристора VS1. Затем устройство отключается аналогично другим аварийным ситуациям.

Резистор R7 подбирают таким образом, чтобы трансивер отключался при работе передатчика на эквивалент антенны 150 Ом, что соответствует КСВ-3.

Эмиттерный переход транзистора VT2 (см. рис. 2) необходимо зашунтировать резистором сопротивлением около 10 кОм.